بررسی مقایسه‎ای توان پیش‎بینی شبکه‎های عصبی مصنوعی با روش توقف زود هنگام و فرایند سری زمانی خودبازگشت در براورد نرخ تورم

نویسندگان

پیام حنفی زاده

حسین پورسلطانی

پریسا ساکتی

چکیده

این مقاله به بررسی مقایسه ای توان شبکه های عصبی مصنوعی و سری های زمانی خودبازگشت در پیش بینی ایستای نرخ تورّم ایران می پردازد. در یک بررسی، با استفاده از 37 سال داده های تاریخی نرخ تورّم ایران، مدل شبکة عصبی مصنوعی در پیش بینی آیندة نزدیک در مقایسه با سری های زمانی خودبازگشت، به‎طور متوسط از عملکرد بهتری برخوردار است. در این بررسی، مزایای روش توقّف زودهنگام در مرحلة یادگیری شبکة عصبی برای پیش بینی سری های زمانی نشان داده شده است. طبقه‎بندی jel: c51, c52, c53, e37

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

مدل‌سازی و پیش‌بینی ضایعات نان با استفاده از مدل‌های سری زمانی و شبکه‌های عصبی مصنوعی

دراین مطالعه به منظور بررسی عوامل مؤثر بر ضایعات نان و تعیین روابط کوتاه‌مدت، بلندمدت و ضریب تصحیح خطا بین ضایعات نان و متغیرهای مستقل مؤثر برآن طی سال‌های 1385-1357 و پیش‌بینی ضایعات نان از الگوی سری زمانی چند متغیره ARDL استفاده شده است. بر اساس الگوی ARDL ضایعات نان در بلندمدت تابعی مستقیم از تولید ناخالص ملی و رشد شهرنشینی می‌باشد و قیمت نان و ضریب جینی بر ضایعات نان اثر معکوس دارند. در کوت...

متن کامل

پیش‌بینی کارایی به کمک تأثیرپذیری غیرخطی از تأخیرهای زمانی در تحلیل پوششی داده‌ها با شبکههای عصبی مصنوعی

هدف: یکی از شیوه‌های مرسوم ارزیابی کارایی هر سازمان یا بنگاه، مقایسه آن با سایر رقبا یا نمونه‌های متناظر آن است. با این حال، در برخی پژوهش‌ها به سنجش کارایی یک واحد در مقایسه با خود در مرور زمان پرداخته شده و روند عملکرد یک واحد نسبت به گذشته خود ارزیابی شده است. هدف پژوهش جاری، پیش‌بینی کارایی یک واحد با استفاده از سری‌های زمانی عملکرد گذشته آن است. روش: این پژوهش به کمک مدل SBM و با استفاده ا...

متن کامل

مقایسه روش‌های سری زمانی و شبکه عصبی مصنوعی در پیش‌بینی تبخیر-تعرق مرجع (مطالعه موردی: ارومیه)

     تبخیر-تعرق یکیازمؤلفه­هایمهمدرمصرفمنابعآب در بخش کشاورزیمی­باشد. لذا ارائه روشی که پیش­بینی مناسب و دقیقی از میزان تبخیر-تعرق مرجع را بدهد، می­تواند در اخذتصمیم­ بهینهبرایبرنامه­ریزی منابع آب کمککند. دراینتحقیق،روش­های سری زمانی و شبکه­های عصبی مصنوعی درپیش­بینیتبخیر-تعرق مرجع ماهانهدرایستگاهسینوپتیک ارومیهموردمقایسه قرار گرفتند. بدین منظور در گام نخست بهترین مدل سری زمانی از بین مدل­های A...

متن کامل

مدلسازی هوشمند سری زمانی جریان ماهانه حوضه رودخانه شور قروه با شبکه عصبی مصنوعی

پیش بینی دقیق جریان در رودخانه ها یکی از مهمترین ارکان در مدیریت منابع آبهای سطحی به ویژه اتخاذ تدابیری مناسب در مواقع سیلاب و بروز خشکسالی هاست. در حقیقت حصول روشهای مناسب و دقیق در پیش بینی جریان رودخانه ها را می توان به عنوان یکی از چالشها در فرآیند مدیریت و مهندسی منابع آب دانست. در این پژوهش برای مدلسازی هوشمند سری زمانی جریان ماهانه از یک دوره ی آماری26ساله (1389-1364) استفاده شد. جهت دست...

متن کامل

منابع من

با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید


عنوان ژورنال:
مجله تحقیقات اقتصادی

ناشر: دانشکده اقتصاد- دانشگاه تهران

ISSN 0039-8969

دوره 42

شماره 4 2008

میزبانی شده توسط پلتفرم ابری doprax.com

copyright © 2015-2023